280 research outputs found

    Modifying burning rate and agglomeration size in aluminized composite solid propellants using mechanically activated metals

    Get PDF
    Agglomeration reduction techniques are important field in solid propellant industry, Large agglomeration results in excessive two phase losses. Tailored composite particles has been applied to tailor aluminum particle ignition and combustion. In this research, mechanical activated aluminum magnesium powders are synthesized, tested in both laser ignition using CO2 and propellant. Prepared powders categorized into particle size that suitable for propellant application. Laser ignition tests showed that the prepared powder are more reactive than magnalium which has the same Al:Mg weight ratio. Agglomeration capturing showed that the prepared powder produce much less than neat aluminum or even similar physical mixture of aluminum and magnesium. The burning rate of propellant using the prepared powder is increased. MA Al/Mg powders as long as with comparable physical mixture are applied in propellant formulation with AP/HTPB. In order to quantify the effect of changing Mg percent. Burning rate is measured from videos captured for strand burning in windowed pressure vessel, also the agglomeration was capturing using special setup. The results showed that MA powder increase burning rate and this increase reach maximum at 50% Mg, while propellant using physical mixture of Al/Mg show constant or little decrease in burning rate. In addition, the MA powder show lower agglomeration size in comparison to neat aluminum propellant or physical mixture with the same Mg percent. The lowest agglomeration sizes were for MA50. However, equilibrium calculation showed 4 sec losses in specific impulse, so MA 70 was chosen as a compromise between low agglomeration size at the minimum loss in specific impulse. Magnalium is an alloy of aluminum and magnesium and it is known for its ease of ignition and high oxidation energy content. It has been used as a metal fuel to increase burning rates of composite modified double base (CMDB) and ammonium perchlorate (AP) composite propellants. However, the ignition temperature is larger than the comparable mechanically activated (MA) Al-Mg powder. Mechanical milling was performed on magnalium powders and modifications of structure and morphology of the alloy during milling were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared magnalium powder was used in a solid propellant, which showed higher burning rates than those containing as-received magnalium. Furthermore, milled magnalium showed higher agglomeration reduction than both as received magnalium as well as MA Al-Mg powders. Extend the application of mechanical alloying of aluminum to other metals with extreme difference in melting/ boiling temperature, the first is Zirconium which is a long time candidate in solid propellant community. The ease of zirconium ignition and the micro-explosive behavior shown by neat zirconium particles promote its usage in agglomeration reduction effort. the other metal is Indium, which has very low melting point compared to other metal, this may open the possibility of earlier reaction of aluminum particles at or near propellant surface resulting in less pre ignition time which reduce agglomeration tendency. MA of 90% Aluminum and 10% of Zirconium or 10% Indium using High energy ball milling, particle characterization using SEM/FIB, XRD and DSC/TGA are performed, burning rate and agglomeration size analyses of solid propellant using sieved MA-powder are done. The results showed that the both MA Al-ZR and MA Al-In ignite in laser beam which verify change in reactivity from neat aluminum with its protective alumina coating. However, burning rate results show no change in burning rate from neat aluminum, also the prepared material shows no reduction in agglomeration size

    Development of Energy Generation By Using Peizoelectric Material Via Structural Vibration

    Get PDF
    The heart of this project is to find a way to use lost energies. In this case vibrations caused by machines or walking is a lost energy that need to be used. As low power electronics and wireless technology starts to develop recently, it was necessary to think of new power sources that produce low power and easily to be harvested. The harvesting of power from different sources started to become commonly used in the last years. With the time the power harvesting circuits will replace the normal finite power supplies used. Piezoelectric material technology produced a new way that uses some of the energy being wasted or ignored in the surrounding, in this case vibration energy that usually lost. Theses materials is already put in to use to harvest power; however, the power produced by these material is very small to be able to power most electronic systems. The research made into this matter has always ended up with the need for methods to accumulate the produced power until an amount of enough energy is produced. At the end of this project the outcome should be a stable source of power to charge a mobile battery or a power ban

    Kinetic and Conventional Spectrophotometric Determination of Bumadizone in its Tablets via Oxidative Coupling with 3-Methyl-2-Benzothiazolinone Hydrazone

    Get PDF
    Two simple, sensitive and accurate spectrophotometric methods have been developed for the determination of bumadizone in bulk drug and its tablets. Both methods based on the oxidative coupling reaction with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) and measuring the absorbance of the developed colors by direct or kinetic spectrophotometric method. Upon treatment of a mixture of the chromogenic reagent and drug with cerium (IV) ammonium sulfate (method I) or ferric chloride (method I), a red or violet color was developed immediately or after 30 minutes measurable at 557 nm for method I or II, respectively. The absorbance-concentration plots were rectilinear over the ranges of 1-10 μg/mL (r = 0.9999) for method I and 2-16 μg/mL (r = 0.9998) for method II. The detection limits were  0.15 and 0.27 μg/mL & the quantitation limits were 0.46 and 0.84 μg/mL for methods I and II, respectively. Different experimental parameters affecting the development and stability of the reactions products were studied and optimized. The proposed methods were applied successfully to the determination of bumadizone in its tablets, and the results obtained were in good agreement with those obtained using a comparison  method.Â

    Recent Drifts in pH-Sensitive Reverse Osmosis

    Get PDF
    Preparation of some smart PAm-ZTS pH-responsive membranes, via reactions between ZTS and PAm under different conditions, was conducted for testing pressure-driven reverse osmosis membranes (PDROMs) in active rejection of Ce4+, Pr3+, Sm3+, Gd3+, Dy3+, and Ho3+ ionic lanthanide species in their 3+ and 4+ states. Recent theoretical models to designate the membrane operations were mathematically itemized, after selective characterization of the PDROMs. The pH scale response of the membrane was confirmed using static adsorption and hydraulic pervasion result estimations. The flux across the PAm-ZTS membrane decreased with the lowering pH value, with drastic decreases between pH 4 and 7, and was both reversible and durable with pH shifts between ~3 and ~8. At lower pH 3, the individual pores were in a closed-state due to the prolonged structure of the amide chains on the porous surfaces. In contrast, at pH 8, the higher pH value, the membrane pores were in an open-state format, because of the collapsed structures of the amide chains. This grants a clear possible approach for manufacturing some pH-responsive composite membranes and inspires further design for their stimuli-responsive actions by incorporating molecularly designed macromolecules, synthesized by controlled polymerization

    Assessment of environmental hazards in the north western coast -Egypt using RS and GIS

    Get PDF
    AbstractSoil erosion, salinity and sodicity hazards are serious problems in the northern west coast of Egypt and lead to reducing the soil quality and increasing the degradation of soil resources. Sidi Barrani and Al-Sallum regions are selected as study areas which are located from a longitude of 25°10′00″ to 26°55′00″East and from a latitude of 31°00′0″ to 31°37′30″ North. Erosion hazard was estimated using the ‘Universal Soil Loss Equation’ (USLE), which is a simple empirical model that is widely used for assessing long-term annual soil loss .The salinity and sodicity hazards were estimated based on FAO method as standard reference. The resultant map of annual soil erosion shows a maximum soil loss of 60th−1y−1with a close relation to foot slopes and wide units on the steep side-slopes (with high LS value) and the erodibility value reached to 0.1th−1y−1. Meanwhile sand beaches and sabkha units are characterized by high environmental hazards of both water erosion, salinity and sodicity, while in the overflow basin units are identified as low environmental hazards. The spatial environmental hazards assessment is conducted by using integrated GIS and RS which can serve as effective inputs in deriving strategies for sustainable land use planning and management

    A unified ontology-based data integration approach for the internet of things

    Get PDF
    Data integration enables combining data from various data sources in a standard format. Internet of things (IoT) applications use ontology approaches to provide a machine-understandable conceptualization of a domain. We propose a unified ontology schema approach to solve all IoT integration problems at once. The data unification layer maps data from different formats to data patterns based on the unified ontology model. This paper proposes a middleware consisting of an ontology-based approach that collects data from different devices. IoT middleware requires an additional semantic layer for cloud-based IoT platforms to build a schema for data generated from diverse sources. We tested the proposed model on real data consisting of approximately 160,000 readings from various sources in different formats like CSV, JSON, raw data, and XML. The data were collected through the file transfer protocol (FTP) and generated 960,000 resource description framework (RDF) triples. We evaluated the proposed approach by running different queries on different machines on SPARQL protocol and RDF query language (SPARQL) endpoints to check query processing time, validation of integration, and performance of the unified ontology model. The average response time for query execution on generated RDF triples on the three servers were approximately 0.144 seconds, 0.070 seconds, 0.062 seconds, respectively

    Characterization and Adsorption Studies of Carbon Nanotubes / Nanofibers for Methane Storage

    Get PDF
    Natural gas (NG), which contains about 95% methane is currently gaining global acceptance as fuel for combustion engines because it is environmentally friendly and clean, naturally abundant, and cheaper than gasoline or diesel. Upon combustion when compared to gasoline or diesel it emits much less carbon dioxide (a major greenhouse gas) as well as several other air pollutants. However, the biggest challenge facing NG use as fuel for the transport industries is its storage. Therefore, carbon nano-structures have been synthesised using a typical floating catalyst chemical vapour deposition (FC-CVD) in a horizontal tubular reactor, which was fabricated in the Department of Chemical & Environmental Engineering, University Putra Malaysia. Ferrocene was used as the catalyst (Fe) precursor, benzene as the carbon source, while a mixture of hydrogen and argon was used as the carrier gas for both ferrocene and benzene vapours. The temperatures for the synthesis were varied between 1000 to 12000C to produce four distinct nanostructures, which are carbon nanotubes (CNTs), nanofibers (CNFs), nanoparticles (CNPs) and nanoporous carbon bulky balls (CNPBs). Upon scanning with scanning electron microscope (SEM) and transmission electron microscope (TEM), the diameters of the carbon nanostructures obtained ranged from 2 to 100 nm. Further characterisation with Accelerated Surface Area and Porosimetry system (ASAP 2000), using liquid N2 (77 K) for the Brunaur- Emmett-Teller (BET) surface characterisation, the surface areas, pore sizes and micropore volumes were found to be in range of 5.06 to 69.2 m2/g, 6.4 to 225.4Å, and 8.03 x 10-4 to 13.7 x 10-3 cm3/g, respectively for 0.602g samples. All samples had hysteresis indicating mesopore condensation of N2 with highest amount adsorbed on CNTs. CNFs and CNPs indicated the different type of isotherm with methane according to the BDDT (Brunauer, Dening, Dening and Teller) classification. A very great size difference was seen between N2 and CH4 hysteresis, which was due to the molecular structure, solid-like and liquid-like phases proposed for CH4 adsorption in and on the carbon nanostructure, respectively. A remarkable storage capacity of methane was achieved with these particles with storage capacity of 5.35 cm3/g for CNTs, 1.48 cm3/g for CNFs, and 0.3651 cm3/g for CNPBs at room temperature and atmospheric pressur

    Technical and Economical Investigation of Renewable Energy Sources for Supplying Offshore Oil production Facilities at Gulf of Suez Area

    Get PDF
    The Gulf of Suez is highly susceptible to economic and energy security due to the heavy need for imported fossil fuels. The energy produced from fossil fuels causes serious environmental pollution. So, it is important to find other clean sources of energy for stabilizing the released amount of carbon dioxide. Gulf of Suez has the potential to develop clean Solar Photovoltaic (PV) and wind systems to improve economic and environmental performance. This paper proposes a combination of floating solar panels (FSP) and offshore wind turbines to solve the main critical issues, such as the land area required for a large number of cells and the space required for wind turbines. In addition to their good economical and environmental benefits. A simplified model is provided to investigate the replacement of traditional generating units (Diesel and Gas operated) supplying offshore oil production field facilities at the Gulf of Suez area with a mix of renewable resources. The load flow analysis is carried out for the model and the cost is calculated and compared for four schemas, the traditional generating, Wind-Gas, PV-Gas, and PV-Wind-Gas hybrid system. From the techno-economic analysis and comparing environmental benefits, floating solar systems and offshore wind turbines can provide a good solution to the existing problems of energy needs with environmental impacts considered

    Development of Energy Generation By Using Peizoelectric Material Via Structural Vibration

    Get PDF
    The heart of this project is to find a way to use lost energies. In this case vibrations caused by machines or walking is a lost energy that need to be used. As low power electronics and wireless technology starts to develop recently, it was necessary to think of new power sources that produce low power and easily to be harvested. The harvesting of power from different sources started to become commonly used in the last years. With the time the power harvesting circuits will replace the normal finite power supplies used. Piezoelectric material technology produced a new way that uses some of the energy being wasted or ignored in the surrounding, in this case vibration energy that usually lost. Theses materials is already put in to use to harvest power; however, the power produced by these material is very small to be able to power most electronic systems. The research made into this matter has always ended up with the need for methods to accumulate the produced power until an amount of enough energy is produced. At the end of this project the outcome should be a stable source of power to charge a mobile battery or a power ban
    corecore